Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
1.
Biomed Microdevices ; 25(3): 21, 2023 06 07.
Article in English | MEDLINE | ID: covidwho-20233873

ABSTRACT

In recent years biomedical scientific community has been working towards the development of high-throughput devices that allow a reliable, rapid and parallel detection of several strains of virus or microparticles simultaneously. One of the complexities of this problem lies on the rapid prototyping of new devices and wireless rapid detection of small particles and virus alike. By reducing the complexity of microfluidics microfabrication and using economic materials along with makerspace tools (Kundu et al. 2018) it is possible to provide an affordable solution to both the problems of high-throughput devices and detection technologies. We present the development of a wireless, standalone device and disposable microfluidics chips that rapidly generate parallel readouts for selected, possible virus variants from a nasal or saliva sample, based on motorized and non-motorized microbeads detection, and imaging processing of the motion tracks of these beads in micrometers. Microbeads and SARS-CoV-2 COVID-19 Delta variant were tested as proof-of-concept for testing the microfluidic cartridges and wireless imaging module. The Microbead Assay (MA) system kit consists of a Wi-Fi readout module, a microfluidic chip, and a sample collection/processing sub-system. Here, we focus on the fabrication and characterization of the microfluidic chip to multiplex various micrometer-sized beads for economic, disposable, and simultaneous detection of up to six different viruses, microparticles or variants in a single test, and data collection using a commercially available, Wi-Fi-capable, and camera integrated device (Fig. 1).


Subject(s)
COVID-19 , Microfluidic Analytical Techniques , Humans , Microfluidics , Microspheres , Cost-Benefit Analysis , SARS-CoV-2 , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/methods
2.
JCI Insight ; 8(13)2023 07 10.
Article in English | MEDLINE | ID: covidwho-20233531

ABSTRACT

SARS-CoV-2 mRNA vaccination generates protective B cell responses targeting the SARS-CoV-2 spike glycoprotein. Whereas anti-spike memory B cell responses are long lasting, the anti-spike humoral antibody response progressively wanes, making booster vaccinations necessary for maintaining protective immunity. Here, we qualitatively investigated the plasmablast responses by measuring from single cells within hours of sampling the affinity of their secreted antibody for the SARS-CoV-2 spike receptor binding domain (RBD) in cohorts of BNT162b2-vaccinated naive and COVID-19-recovered individuals. Using a droplet microfluidic and imaging approach, we analyzed more than 4,000 single IgG-secreting cells, revealing high interindividual variability in affinity for RBD, with variations over 4 logs. High-affinity plasmablasts were induced by BNT162b2 vaccination against Hu-1 and Omicron RBD but disappeared quickly thereafter, whereas low-affinity plasmablasts represented more than 65% of the plasmablast response at all time points. Our droplet-based method thus proves efficient at fast and qualitative immune monitoring and should be helpful for optimization of vaccination protocols.


Subject(s)
BNT162 Vaccine , COVID-19 , Humans , SARS-CoV-2/genetics , Microfluidics , COVID-19/prevention & control , RNA, Messenger
3.
Anal Chim Acta ; 1271: 341469, 2023 Aug 29.
Article in English | MEDLINE | ID: covidwho-20230823

ABSTRACT

Traditional nucleic acid extraction and detection is based on open operation, which may cause cross-contamination and aerosol formation. This study developed a droplet magnetic-controlled microfluidic chip integrated nucleic acid extraction, purification and amplification. The reagent is sealed in oil to form a droplet, and the nucleic acid is extracted and purified by controlling the movement of the magnetic beads (MBs) through a permanent magnet, ensuring a closed environment. This chip can automatically extract nucleic acid from multiple samples within 20 min, and can be directly placed in the in situ amplification instrument for amplification without further transfer of nucleic acid, characterized by simple, fast, time-saving and labor-saving. The results showed that the chip was able to detect <10 copies/test SARS-CoV-2 RNA, and EGFR exon 21 L858R mutations were detected in H1975 cells as low as 4 cells. In addition, on the basis of the droplet magnetic-controlled microfluidic chip, we further developed a multi-target detection chip, which used MBs to divide the nucleic acid of the sample into three parts. And the macrolides resistance mutations A2063G and A2064G, and the P1 gene of mycoplasma pneumoniae (MP) were successfully detected in clinical samples by the multi-target detection chip, providing the possibility for future application in the detection of multiple pathogens.


Subject(s)
COVID-19 , Neoplasms , Nucleic Acids , Humans , Nucleic Acids/genetics , Microfluidics , RNA, Viral , Nucleic Acid Amplification Techniques/methods , COVID-19/diagnosis , SARS-CoV-2 , Magnetic Phenomena
4.
Anal Chem ; 95(21): 8332-8339, 2023 05 30.
Article in English | MEDLINE | ID: covidwho-2324375

ABSTRACT

Poly(dimethylsiloxane) (PDMS) is used in microfluidics owing to its biocompatibility and simple fabrication. However, its intrinsic hydrophobicity and biofouling inhibit its microfluidic applications. Conformal hydrogel-skin coating for PDMS microchannels, involving the microstamping transfer of the masking layer, is reported herein. A selective uniform hydrogel layer with a thickness of ∼1 µm was coated in diverse PDMS microchannels with a resolution of ∼3 µm, maintaining its structure and hydrophilicity after 180 days (6 months). The wettability transition of PDMS was demonstrated through the switched emulsification in a flow-focusing device (water-in-oil [pristine PDMS] to oil-in-water [hydrophilic PDMS]). A one-step bead-based immunoassay was performed to detect the anti-severe acute respiratory syndrome coronavirus 2 IgG using a hydrogel-skin-coated point-of-care platform.


Subject(s)
COVID-19 , Microfluidics , Humans , Hydrogels , Dimethylpolysiloxanes/chemistry , Wettability , Water
5.
Analyst ; 148(12): 2758-2766, 2023 Jun 12.
Article in English | MEDLINE | ID: covidwho-2323689

ABSTRACT

This paper introduces an enclosed microfluidic chip that integrates sample preparation and the chamber-based digital polymerase chain reaction (cdPCR). The sample preparation of the chip includes nucleic acid extraction and purification based on magnetic beads, which adsorb nucleic acids by moving around the reaction chambers to complete the reactions including lysis, washing, and elution. The cdPCR area of the chip consists of tens of thousands of regularly arranged microchambers. After the sample preparation processes are completed, the purified nucleic acid can be directly introduced into the microchambers for amplification and detection on the chip. The nucleic acid extraction performance and digital quantification performance of the system were examined using synthetic SARS-CoV-2 plasmid templates at concentrations ranging from 101-105 copies per µL. Further on, a simulated clinical sample was used to test the system, and the integrated chip was able to accurately detect SARS-CoV-2 virus particle samples doped with interference (saliva) with a detection limit of 10 copies per µL. This integrated system could provide a promising tool for point-of-care testing of pathogenic infections.


Subject(s)
Microfluidics , Microfluidics/methods , Polymerase Chain Reaction , Nucleic Acids/analysis , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
6.
Nucleic Acids Res ; 51(11): e65, 2023 Jun 23.
Article in English | MEDLINE | ID: covidwho-2322793

ABSTRACT

Despite the need in various applications, accurate quantification of nucleic acids still remains a challenge. The widely-used qPCR has reduced accuracy at ultralow template concentration and is susceptible to nonspecific amplifications. The more recently developed dPCR is costly and cannot handle high-concentration samples. We combine the strengths of qPCR and dPCR by performing PCR in silicon-based microfluidic chips and demonstrate high quantification accuracy in a large concentration range. Importantly, at low template concentration, we observe on-site PCR (osPCR), where only certain sites of the channel show amplification. The sites have almost identical ct values, showing osPCR is a quasi-single molecule phenomenon. Using osPCR, we can measure both the ct values and the absolute concentration of templates in the same reaction. Additionally, osPCR enables identification of each template molecule, allowing removal of nonspecific amplification during quantification and greatly improving quantification accuracy. We develop sectioning algorithm that improves the signal amplitude and demonstrate improved detection of COVID in patient samples.


Subject(s)
COVID-19 Testing , Polymerase Chain Reaction , Humans , COVID-19 , DNA/genetics , Microfluidics
7.
Int J Biol Macromol ; 235: 123784, 2023 Apr 30.
Article in English | MEDLINE | ID: covidwho-2312488

ABSTRACT

Microfluidics is a revolutionary technology that has promising applications in the biomedical field.Integrating microfluidic technology with the traditional assays unravels the innumerable possibilities for translational biomedical research. Microfluidics has the potential to build up a novel platform for diagnosis and therapy through precise manipulation of fluids and enhanced throughput functions. The developments in microfluidics-based devices for diagnostics have evolved in the last decade and have been established for their rapid, effective, accurate and economic advantages. The efficiency and sensitivity of such devices to detect disease-specific macromolecules like proteins and nucleic acids have made crucial impacts in disease diagnosis. The disease modelling using microfluidic systems provides a more prominent replication of the in vivo microenvironment and can be a better alternative for the existing disease models. These models can replicate critical microphysiology like the dynamic microenvironment, cellular interactions, and biophysical and biochemical cues. Microfluidics also provides a promising system for high throughput drug screening and delivery applications. However, microfluidics-based diagnostics still encounter related challenges in the reliability, real-time monitoring and reproducibility that circumvents this technology from being impacted in the healthcare industry. This review highlights the recent microfluidics developments for modelling and diagnosing common diseases, including cancer, neurological, cardiovascular, respiratory and autoimmune disorders, and its applications in drug development.


Subject(s)
High-Throughput Screening Assays , Microfluidics , Reproducibility of Results , Pharmaceutical Preparations , Lab-On-A-Chip Devices
8.
Circ Res ; 132(10): 1405-1424, 2023 05 12.
Article in English | MEDLINE | ID: covidwho-2318962

ABSTRACT

SARS-CoV-2, the virus underlying COVID-19, has now been recognized to cause multiorgan disease with a systemic effect on the host. To effectively combat SARS-CoV-2 and the subsequent development of COVID-19, it is critical to detect, monitor, and model viral pathogenesis. In this review, we discuss recent advancements in microfluidics, organ-on-a-chip, and human stem cell-derived models to study SARS-CoV-2 infection in the physiological organ microenvironment, together with their limitations. Microfluidic-based detection methods have greatly enhanced the rapidity, accessibility, and sensitivity of viral detection from patient samples. Engineered organ-on-a-chip models that recapitulate in vivo physiology have been developed for many organ systems to study viral pathology. Human stem cell-derived models have been utilized not only to model viral tropism and pathogenesis in a physiologically relevant context but also to screen for effective therapeutic compounds. The combination of all these platforms, along with future advancements, may aid to identify potential targets and develop novel strategies to counteract COVID-19 pathogenesis.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Microfluidics , Microphysiological Systems
9.
Biosens Bioelectron ; 236: 115362, 2023 Sep 15.
Article in English | MEDLINE | ID: covidwho-2316354

ABSTRACT

Pandemics as the one we are currently facing, where fast-spreading viruses present a threat to humanity, call for simple and reliable methods to perform early diagnosis, enabling detection of very low pathogen loads even before symptoms start showing in the host. So far, standard polymerase chain reaction (PCR) is the most reliable method for doing so, but it is rather slow and needs specialized reagents and trained personnel to operate it. Additionally, it is expensive and not easily accessible. Therefore, developing miniaturized and portable sensors which perform early detection of pathogens with high reliability is necessary to not only prevent the spreading of the disease but also to monitor the effectiveness of the developed vaccines and the appearance of new pathogenic variants. Thus, in this work we develop a sensitive microfluidic impedance biosensor for the direct detection of SARS-CoV-2, towards a mobile point-of-care (POC) platform. The operational parameters are optimized with the aid of design-of-experiment (DoE), for an accurate detection of the viral antigens using electrochemical impedance spectroscopy (EIS). We perform the biodetection of buffer samples spiked with fM concentration levels and validate the biosensor in a clinical context of relevance by analyzing 15 real patient samples up to a Ct value (cycle threshold) of 27. Finally, we demonstrate the versatility of the developed platform using different settings, including a small portable potentiostat, using multiple channels for self-validation, as well as with single biosensors for a smartphone-based readout. This work contributes to the rapid and reliable diagnostics of COVID-19 and can be extended to other infectious diseases, allowing the monitoring of viral load in vaccinated and unvaccinated people to anticipate a potential relapse of the disease.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , SARS-CoV-2 , COVID-19/diagnosis , Microfluidics , Electric Impedance , Reproducibility of Results , Biosensing Techniques/methods
10.
Methods Mol Biol ; 2621: 307-323, 2023.
Article in English | MEDLINE | ID: covidwho-2297362

ABSTRACT

Zika virus (ZIKV) infection may cause serious birth defects and is a critical concern for women of child-bearing age in affected regions. A simple, portable, and easy-to-use ZIKV detection method would enable point-of-care testing, which may aid in prevention of the spread of the virus. Herein, we describe a reverse transcription isothermal loop-mediated amplification (RT-LAMP) method that detects the presence of ZIKV RNA in complex samples (e.g., blood, urine, and tap water). Phenol red is the colorimetric indicator of successful amplification. Color changes based on the amplified RT-LAMP product from the presence of viral target are monitored using a smartphone camera under ambient light conditions. A single viral RNA molecule per µL can be detected in as quickly as 15 min using this method with 100% sensitivity and 100% specificity in blood and tap water, while 100% sensitivity and 67% specificity in urine. This platform can also be used to identify other viruses including SARS-CoV-2 and improve the current state of field-based diagnostics.


Subject(s)
COVID-19 , Zika Virus Infection , Zika Virus , Female , Humans , Zika Virus/genetics , Microfluidics , Smartphone , Sensitivity and Specificity , SARS-CoV-2
11.
Opt Express ; 31(8): 12138-12149, 2023 Apr 10.
Article in English | MEDLINE | ID: covidwho-2297198

ABSTRACT

The nanoplasmonic sensor of the nanograting array has a remarkable ability in label-free and rapid biological detection. The integration of the nanograting array with the standard vertical-cavity surface-emitting lasers (VCSEL) platform can achieve a compact and powerful solution to provide on-chip light sources for biosensing applications. Here, a high sensitivity and label-free integrated VCSELs sensor was developed as a suitable analysis technique for COVID-19 specific receptor binding domain (RBD) protein. The gold nanograting array is integrated on VCSELs to realize the integrated microfluidic plasmonic biosensor of on-chip biosensing. The 850 nm VCSELs are used as a light source to excite the localized surface plasmon resonance (LSPR) effect of the gold nanograting array to detect the concentration of attachments. The refractive index sensitivity of the sensor is 2.99 × 106 nW/RIU. The aptamer of RBD was modified on the surface of the gold nanograting to detect the RBD protein successfully. The biosensor has high sensitivity and a wide detection range of 0.50 ng/mL - 50 µg/mL. This VCSELs biosensor provides an integrated, portable, and miniaturized idea for biomarker detection.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , Microfluidics , SARS-CoV-2 , Carrier Proteins , COVID-19/diagnosis , Biosensing Techniques/methods , Surface Plasmon Resonance/methods , Lasers , Gold/chemistry
12.
Anal Methods ; 15(22): 2721-2728, 2023 Jun 08.
Article in English | MEDLINE | ID: covidwho-2292950

ABSTRACT

A capillary-driven microfluidic sequential flow device, designed for eventual at-home or doctor's office use, was developed to perform an enzyme-linked immunosorbent assay (ELISA) for serology assays. Serology assays that detect SARS-CoV-2 antibodies can be used to determine prior infection, immunity status, and/or individual vaccination status and are typically run using well-plate ELISAs in centralized laboratories, but in this format SARs-CoV-2 serology tests are too expensive and/or slow for most situations. Instead, a point-of-need device that can be used at home or in doctor's offices for COVID-19 serology testing would provide critical information for managing infections and determining immune status. Lateral flow assays are common and easy to use, but lack the sensitivity needed to reliably detect SARS-CoV-2 antibodies in clinical samples. This work describes a microfluidic sequential flow device that is as simple to use as a lateral flow assay, but as sensitive as a well-plate ELISA through sequential delivery of reagents to the detection area using only capillary flow. The device utilizes a network of microfluidic channels made of transparency film and double-sided adhesive combined with paper pumps to drive flow. The geometry of the channels and storage pads enables automated sequential washing and reagent addition steps with two simple end-user steps. An enzyme label and colorimetric substrate produce an amplified, visible signal for increased sensitivity, while the integrated washing steps decrease false positives and increase reproducibility. Naked-eye detection can be used for qualitative results or a smartphone camera for quantitative analysis. The device detected antibodies at 2.8 ng mL-1 from whole blood, while a well-plate ELISA using the same capture and detection antibodies could detect 1.2 ng mL-1. The performance of the capillary-driven immunoassay (CaDI) system developed here was confirmed by demonstrating SARS-CoV-2 antibody detection, and we believe that the device represents a fundamental step forward in equipment-free point-of-care technology.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Microfluidics , Reproducibility of Results , Enzyme-Linked Immunosorbent Assay/methods , Antibodies, Viral
13.
Adv Sci (Weinh) ; 10(18): e2207455, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2296934

ABSTRACT

Recent global events such as COVID-19 pandemic amid rising rates of chronic lung diseases highlight the need for safer, simpler, and more available treatments for respiratory failure, with increasing interest in extracorporeal membrane oxygenation (ECMO). A key factor limiting use of this technology is the complexity of the blood circuit, resulting in clotting and bleeding and necessitating treatment in specialized care centers. Microfluidic oxygenators represent a promising potential solution, but have not reached the scale or performance required for comparison with conventional hollow fiber membrane oxygenators (HFMOs). Here the development and demonstration of the first microfluidic respiratory assist device at a clinical scale is reported, demonstrating efficient oxygen transfer at blood flow rates of 750 mL min⁻1 , the highest ever reported for a microfluidic device. The central innovation of this technology is a fully 3D branching network of blood channels mimicking key features of the physiological microcirculation by avoiding anomalous blood flows that lead to thrombus formation and blood damage in conventional oxygenators. Low, stable blood pressure drop, low hemolysis, and consistent oxygen transfer, in 24-hour pilot large animal experiments are demonstrated - a key step toward translation of this technology to the clinic for treatment of a range of lung diseases.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Animals , Humans , Microfluidics , Pandemics , Oxygen
14.
Biosens Bioelectron ; 228: 115213, 2023 May 15.
Article in English | MEDLINE | ID: covidwho-2306423

ABSTRACT

Droplet microfluidic technology has revolutionized biomolecular analytical research, as it has the capability to reserve the genotype-to-phenotype linkage and assist for revealing the heterogeneity. Massive and uniform picolitre droplets feature dividing solution to the level that single cell and single molecule in each droplet can be visualized, barcoded, and analyzed. Then, the droplet assays can unfold intensive genomic data, offer high sensitivity, and screen and sort from a large number of combinations or phenotypes. Based on these unique advantages, this review focuses on up-to-date research concerning diverse screening applications utilizing droplet microfluidic technology. The emerging progress of droplet microfluidic technology is first introduced, including efficient and scaling-up in droplets encapsulation, and prevalent batch operations. Then the new implementations of droplet-based digital detection assays and single-cell muti-omics sequencing are briefly examined, along with related applications such as drug susceptibility testing, multiplexing for cancer subtype identification, interactions of virus-to-host, and multimodal and spatiotemporal analysis. Meanwhile, we specialize in droplet-based large-scale combinational screening regarding desired phenotypes, with an emphasis on sorting for immune cells, antibodies, enzymatic properties, and proteins produced by directed evolution methods. Finally, some challenges, deployment and future perspective of droplet microfluidics technology in practice are also discussed.


Subject(s)
Biosensing Techniques , Microfluidic Analytical Techniques , Mycobacterium tuberculosis , Microfluidics/methods , Microbial Sensitivity Tests , Proteins , Microfluidic Analytical Techniques/methods , High-Throughput Screening Assays/methods
15.
Stem Cell Reports ; 17(9): 1959-1975, 2022 09 13.
Article in English | MEDLINE | ID: covidwho-2305537

ABSTRACT

In vitro tissue models hold great promise for modeling diseases and drug responses. Here, we used emulsion microfluidics to form micro-organospheres (MOSs), which are droplet-encapsulated miniature three-dimensional (3D) tissue models that can be established rapidly from patient tissues or cells. MOSs retain key biological features and responses to chemo-, targeted, and radiation therapies compared with organoids. The small size and large surface-to-volume ratio of MOSs enable various applications including quantitative assessment of nutrient dependence, pathogen-host interaction for anti-viral drug screening, and a rapid potency assay for chimeric antigen receptor (CAR)-T therapy. An automated MOS imaging pipeline combined with machine learning overcomes plating variation, distinguishes tumorspheres from stroma, differentiates cytostatic versus cytotoxic drug effects, and captures resistant clones and heterogeneity in drug response. This pipeline is capable of robust assessments of drug response at individual-tumorsphere resolution and provides a rapid and high-throughput therapeutic profiling platform for precision medicine.


Subject(s)
Antineoplastic Agents , Organoids , Antineoplastic Agents/pharmacology , Drug Evaluation, Preclinical/methods , Humans , Microfluidics , Precision Medicine
16.
Biosensors (Basel) ; 13(2)2023 Jan 20.
Article in English | MEDLINE | ID: covidwho-2268792

ABSTRACT

Spread of coronavirus disease 2019 (COVID-19) has significantly impacted the public health and economic sectors. It is urgently necessary to develop rapid, convenient, and cost-effective point-of-care testing (POCT) technologies for the early diagnosis and control of the plague's transmission. Developing POCT methods and related devices is critical for achieving point-of-care diagnosis. With the advantages of miniaturization, high throughput, small sample requirements, and low actual consumption, microfluidics is an essential technology for the development of POCT devices. In this review, according to the different driving forces of the fluid, we introduce the common POCT devices based on microfluidic technology on the market, including paper-based microfluidic, centrifugal microfluidic, optical fluid, and digital microfluidic platforms. Furthermore, various microfluidic-based assays for diagnosing COVID-19 are summarized, including immunoassays, such as ELISA, and molecular assays, such as PCR. Finally, the challenges of and future perspectives on microfluidic device design and development are presented. The ultimate goals of this paper are to provide new insights and directions for the development of microfluidic diagnostics while expecting to contribute to the control of COVID-19.


Subject(s)
COVID-19 , Microfluidic Analytical Techniques , Humans , Microfluidics , Point-of-Care Systems , Point-of-Care Testing , Immunoassay , Lab-On-A-Chip Devices
17.
Biosensors (Basel) ; 12(12)2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2256287

ABSTRACT

Seeking optimized infectious pathogen detection tools is of primary importance to lessen the spread of infections, allowing prompt medical attention for the infected. Among nucleic-acid-based sensing techniques, loop-mediated isothermal amplification is a promising method, as it provides rapid, sensitive, and specific detection of microbial and viral pathogens and has enormous potential to transform current point-of-care molecular diagnostics. In this review, the advances in LAMP-based point-of-care diagnostics assays developed during the past few years for rapid and sensitive detection of infectious pathogens are outlined. The numerous detection methods of LAMP-based biosensors are discussed in an end-point and real-time manner with ideal examples. We also summarize the trends in LAMP-on-a-chip modalities, such as classical microfluidic, paper-based, and digital LAMP, with their merits and limitations. Finally, we provide our opinion on the future improvement of on-chip LAMP methods. This review serves as an overview of recent breakthroughs in the LAMP approach and their potential for use in the diagnosis of existing and emerging diseases.


Subject(s)
Biosensing Techniques , Communicable Diseases , Humans , Point-of-Care Systems , Nucleic Acid Amplification Techniques/methods , Point-of-Care Testing , Microfluidics , Molecular Diagnostic Techniques
18.
Biomed Microdevices ; 25(2): 10, 2023 03 13.
Article in English | MEDLINE | ID: covidwho-2283604

ABSTRACT

The COVID-19 pandemic has posed significant challenges to existing healthcare systems around the world. The urgent need for the development of diagnostic and therapeutic strategies for COVID-19 has boomed the demand for new technologies that can improve current healthcare approaches, moving towards more advanced, digitalized, personalized, and patient-oriented systems. Microfluidic-based technologies involve the miniaturization of large-scale devices and laboratory-based procedures, enabling complex chemical and biological operations that are conventionally performed at the macro-scale to be carried out on the microscale or less. The advantages microfluidic systems offer such as rapid, low-cost, accurate, and on-site solutions make these tools extremely useful and effective in the fight against COVID-19. In particular, microfluidic-assisted systems are of great interest in different COVID-19-related domains, varying from direct and indirect detection of COVID-19 infections to drug and vaccine discovery and their targeted delivery. Here, we review recent advances in the use of microfluidic platforms to diagnose, treat or prevent COVID-19. We start by summarizing recent microfluidic-based diagnostic solutions applicable to COVID-19. We then highlight the key roles microfluidics play in developing COVID-19 vaccines and testing how vaccine candidates perform, with a focus on RNA-delivery technologies and nano-carriers. Next, microfluidic-based efforts devoted to assessing the efficacy of potential COVID-19 drugs, either repurposed or new, and their targeted delivery to infected sites are summarized. We conclude by providing future perspectives and research directions that are critical to effectively prevent or respond to future pandemics.


Subject(s)
COVID-19 , Microfluidics , Humans , Microfluidics/methods , COVID-19 Vaccines , Pandemics/prevention & control , COVID-19/diagnosis , Drug Delivery Systems , Pharmaceutical Preparations , COVID-19 Testing
19.
Talanta ; 258: 124470, 2023 Jun 01.
Article in English | MEDLINE | ID: covidwho-2282954

ABSTRACT

During global outbreaks such as COVID-19, regular nucleic acid amplification tests (NAATs) have posed unprecedented burden on hospital resources. Data of traditional NAATs are manually analyzed post assay. Integration of artificial intelligence (AI) with on-chip assays give rise to novel analytical platforms via data-driven models. Here, we combined paper microfluidics, portable optoelectronic system with deep learning for SARS-CoV-2 detection. The system was quite streamlined with low power dissipation. Pixel by pixel signals reflecting amplification of synthesized SARS-CoV-2 templates (containing ORF1ab, N and E genes) can be real-time processed. Then, the data were synchronously fed to the neural networks for early prediction analysis. Instead of the quantification cycle (Cq) based analytics, reaction dynamics hidden at the early stage of amplification curve were utilized by neural networks for predicting subsequent data. Qualitative and quantitative analysis of the 40-cycle NAATs can be achieved at the end of 22nd cycle, reducing time cost by 45%. In particular, the attention mechanism based deep learning model trained by microfluidics-generated data can be seamlessly adapted to multiple clinical datasets including readouts of SARS-CoV-2 detection. Accuracy, sensitivity and specificity of the prediction can reach up to 98.1%, 97.6% and 98.6%, respectively. The approach can be compatible with the most advanced sensing technologies and AI algorithms to inspire ample innovations in fields of fundamental research and clinical settings.


Subject(s)
COVID-19 , Deep Learning , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , Artificial Intelligence , Microfluidics , Nucleic Acid Amplification Techniques , Sensitivity and Specificity
20.
PLoS One ; 18(3): e0283149, 2023.
Article in English | MEDLINE | ID: covidwho-2272096

ABSTRACT

OBJECTIVES: We evaluate the diagnostic performance of dried blood microsampling combined with a high-throughput microfluidic nano-immunoassay (NIA) for the identification of anti-SARS-CoV-2 Spike IgG seropositivity. METHODS: We conducted a serological study among 192 individuals with documented prior SARS-CoV-2 infection and 44 SARS-CoV-2 negative individuals. Participants with prior SARS-CoV-2 infection had a long interval of 11 months since their qRT-PCR positive test. Serum was obtained after venipuncture and tested with an automated electrochemiluminescence anti-SARS-CoV-2 S total Ig reference assay, a commercial ELISA anti-S1 IgG assay, and the index test NIA. In addition, 109 participants from the positive cohort and 44 participants from the negative cohort participated in capillary blood collection using three microsampling devices: Mitra, repurposed glucose test strips, and HemaXis. Samples were dried, shipped by regular mail, extracted, and measured with NIA. RESULTS: Using serum samples, we achieve a clinical sensitivity of 98·33% and specificity of 97·62% on NIA, affirming the high performance of NIA in participants 11 months post infection. Combining microsampling with NIA, we obtain a clinical sensitivity of 95·05% using Mitra, 61·11% using glucose test strips, 83·16% using HemaXis, and 91·49% for HemaXis after automated extraction, without any drop in specificity. DISCUSSION: High sensitivity and specificity was demonstrated when testing micro-volume capillary dried blood samples using NIA, which is expected to facilitate its use in large-scale studies using home-based sampling or samples collected in the field.


Subject(s)
COVID-19 , Humans , Antibodies, Viral , COVID-19/diagnosis , Immunoglobulin G , Microfluidics , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL